Inheritance diagram for OFOrderedSet< T >:
Public Member Functions | |
OFOrderedSet () | |
Default constructor. | |
OFOrderedSet (const OFOrderedSet< T > &src) | |
Copy constructor. | |
virtual | ~OFOrderedSet () |
Destructor. | |
const OFOrderedSet< T > & | operator= (const OFOrderedSet< T > &src) |
operator=. | |
const OFOrderedSet< T > & | assign (const OFOrderedSet< T > &src) |
This function is a workaround for avoiding a compiler warning on Solaris 2.5.1 using compiler SC 2.0.1. | |
virtual OFBool | operator== (const OFOrderedSet< T > &other) const |
Determines if two sets are identical. | |
virtual OFBool | operator!= (const OFOrderedSet< T > &other) const |
Determines if two sets are not identical. | |
virtual void | Insert (const T &item) |
Inserts a new item into the set. | |
virtual void | Insert (const OFOrderedSet< T > &other) |
Inserts all items of another set into this set. | |
virtual void | InsertAt (const T &item, unsigned int idx) |
Inserts a new item at a certain position into the set. | |
virtual void | Remove (const T &item) |
Removes one item from the set. | |
virtual void | RemoveByIndex (unsigned int idx) |
Removes one item from the set. | |
virtual T * | Find (const T &item) const |
Tries to find a given object in the set. | |
virtual OFBool | Contains (const T &item) const |
Determines if a certain item is contained in the set. | |
virtual OFBool | IsSupersetOf (const OFOrderedSet< T > &other) const |
Determines if this is an actual superset of other, i.e. | |
virtual OFBool | IsSubsetOf (const OFOrderedSet< T > &other) const |
Determines if this is an actual subset of other, i.e. | |
OFOrderedSet< T > | Union (const OFOrderedSet< T > &other) const |
Determines the union of the two sets this and other, i.e. | |
OFOrderedSet< T > | Intersection (const OFOrderedSet< T > &other) const |
Determines the intersection of the two sets this and other, i.e. | |
OFOrderedSet< T > | Difference (const OFOrderedSet< T > &other) const |
Determines the difference this - other, i.e. | |
OFOrderedSet< T > | SymmetricDifference (const OFOrderedSet< T > &other) const |
Determines the symmetric difference of this and other, i.e. |
Note the following properties of this class:
Definition at line 56 of file ofoset.h.
|
Copy constructor.
|
|
Determines if a certain item is contained in the set.
Implements OFSet< T >. Definition at line 334 of file ofoset.h. Referenced by OFOrderedSet< T >::Difference(), OFOrderedSet< T >::Intersection(), and OFOrderedSet< T >::IsSupersetOf(). |
|
Determines the difference this - other, i.e. the set containing all the items found in this but not in other, and returns the resulting new set.
Definition at line 457 of file ofoset.h. References OFOrderedSet< T >::Contains(), and OFOrderedSet< T >::Insert(). Referenced by OFOrderedSet< T >::SymmetricDifference(). |
|
Tries to find a given object in the set. In case the specified object could be found, a pointer to the corresponding element within the set is returned; in case the specified object could not be found, NULL will be returned.
Implements OFSet< T >. |
|
Inserts all items of another set into this set.
Definition at line 170 of file ofoset.h. References OFOrderedSet< T >::Insert(), OFSet< T >::items, and OFSet< T >::num. |
|
Inserts a new item into the set.
Implements OFSet< T >. Definition at line 150 of file ofoset.h. References OFSet< T >::items, OFSet< T >::num, OFSet< T >::Resize(), and OFSet< T >::size. Referenced by OFOrderedSet< T >::Difference(), OFOrderedSet< T >::Insert(), OFOrderedSet< T >::InsertAt(), OFOrderedSet< T >::Intersection(), and OFOrderedSet< T >::Union(). |
|
Inserts a new item at a certain position into the set.
Definition at line 185 of file ofoset.h. References OFOrderedSet< T >::Insert(), OFSet< T >::items, OFSet< T >::num, OFSet< T >::Resize(), and OFSet< T >::size. |
|
Determines the intersection of the two sets this and other, i.e. the set containing all items which can be found in both this and other, and returns the resulting new set.
Definition at line 423 of file ofoset.h. References OFOrderedSet< T >::Contains(), OFOrderedSet< T >::Insert(), and OFOrderedSet< T >::Remove(). |
|
Determines if this is an actual subset of other, i.e. if this is completely contained in other and other furthermore has additional elements.
|
|
Determines if this is an actual superset of other, i.e. if this completely contains other and furthermore has additional elements.
Definition at line 354 of file ofoset.h. References OFOrderedSet< T >::Contains(), and OFOrderedSet< T >::Remove(). |
|
Determines if two sets are not identical.
|
|
operator=.
Definition at line 89 of file ofoset.h. References OFOrderedSet< T >::assign(). |
|
Determines if two sets are identical. Note that for ordered sets not only their elements have to be identical, but also the order of their elements has to be identical.
Definition at line 113 of file ofoset.h. References OFSet< T >::items, and OFSet< T >::num. |
|
Removes one item from the set.
Implements OFSet< T >. Definition at line 233 of file ofoset.h. References OFSet< T >::items, and OFSet< T >::num. Referenced by OFOrderedSet< T >::Intersection(), and OFOrderedSet< T >::IsSupersetOf(). |
|
Removes one item from the set.
Implements OFSet< T >. |
|
Determines the symmetric difference of this and other, i.e. the set containing all the items which can be found either in this or in other but not in the intersection of this and other, and returns the resulting new set.
Definition at line 494 of file ofoset.h. References OFOrderedSet< T >::Difference(), and OFOrderedSet< T >::Union(). |
|
Determines the union of the two sets this and other, i.e. the set containing all items which can be found either in this or in other, and returns the resulting new set.
Definition at line 404 of file ofoset.h. References OFOrderedSet< T >::Insert(). Referenced by OFOrderedSet< T >::SymmetricDifference(). |